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LONG-TERM GOALS

My long-term goal is to contribute to understanding of the nonlinear dynamics of the wave sea surface
excited by wind. Of particular interest to me is the role of such interaction in long-term prediction of
wave amplitudes excited in rough seas.

OBJECTIVES

I wish to develop the phenomenological diffusion model of interaction of gravitational waves on water
surface in presence of wind and viscosity. Motivation for development of such a model is the fact that
numerical solvers based on Hasselmann kinetic equation for waves are time-consuming and hardly can
be used for practical purposes. Numerical solver based on the diffusion model is expected to be at least
three orders of magnitude faster.

APPROACH

I propose two generations of simplified model of Hasselmann kinetic equation for waves.  The first
generation model
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Eq.(1) is the diffusion approximation obtained from differential approximation to the kinetic equation
[2], [3]. One should emphasize that equation (1) is the model equation and the value of the constant
α can be defined only from comparison with the results of numerical simulation of the kinetic equation
or laboratory measurements. The results of numerical simulation of the Eq.(1) have shown good
agreement of angle averaged frequency directional distribution of the nonlinear interaction term  with
the corresponding results for kinetic equation (see [4], [5]). The correspondence of angular
distributions for particular frequency values was not, however, very good.
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The second generation diffusion model takes into account the effects of non-locality in the
nonlinear interaction term while preserving such important properties of the first generation diffusion
model as scaling, conservation laws and Kolmogorov solution:

( )2

4
2

3
2

2
3

1
24 nnnnnnnL

t

n ααααω +++=
∂
∂

where ∫= ϕωdndn
2

1
  and =2n ∫ ϕωddn2

2

1
.

Besides the term 3
1nα  in the right-hand side that is similar to the first generation model there are the

other terms representing all possible combination of the terms which are cubical with respect to n and

contain an integration overφ . We intentionally omitted the term ( )3
ϕnd∫  and ϕdn3∫ as they make no

contribution into angular anisotropy. As in the case of first generation diffusion model, the coefficients
4,1, =iiα are defined from the comparison with the results of numerical simulation of kinetic equation

or experimental measurements. Obviously, the choice of the coefficients 0,0,0,0 4321 ===≠ αααα
corresponds to the first generation model.

The following is the description of the algorithm of definition of the set of coefficients
4,1, =iiα . Let ( )( )ϕω,nSnl  be nonlinear interaction term at the kinetic equation, ),( ϕωjj nn =
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We are looking for the best approximation to the function )( jnl nS by the linear combination of the

functions 4,1),( =inS Ji in the norm 2L :
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The coefficients 4,1, =iiα are the solution of the system of equations (4) which is the system of linear

equations

                                                               4,1,, == jiCB jijijα                                                                 (5)

 where symmetric  matrix ijB and vector ijC are defined by

                                  4,1,,)()(,)()( === ∫∫ jiddnSnSCddnSnSB JJJnljJjJiij ϕωϕω



The numerical part of the work was performed by Dr. Andrei Pouchkarev, Department of
Mathematics, University of Arizona.

WORK COMPLETED

First and second generation diffusion model were proposed. Based on these models supplied by
viscous and forcing terms, computer codes have been created. Both codes have been shown to
reproduce important properties of the original Hasselmann equation -- stationary Kolmogorov
solutions. Typical calculation of the evolution of the turbulence driven by external forcing from the
initial low-level random noise conditions to the stationary equilibrium state on the grid of 40x130
nodes in angle-frequency space took the time of the order of dozens of minutes using Pentium-133
MHz PC. Comparison of the results of exact Hasselmann equation, first and second generation
diffusion models has been made. It was shown what are the advantages of the second generation model
with respect to the first generation one.

RESULTS

We calculated the coefficients 4,1, =iiα as the solution of the system of linear equations (5) using the

functions Jn  and )( Jnl nS from numerical simulation of kinetic equation for waves by Resio and Tracy
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Both first and second generation model qualitatively correctly reflect the behavior of ( )ϕ,fSnl in the

kinetic equation. It should be noted that both of them fail to reproduce such fine details of the
( )ϕ,fSnl  distribution as two-hump maximum and small-amplitude high-frequency tail.

 Fig.1 represents directional (angle averaged) distribution of the spectrum as a function of the
frequency for three models. The correspondence of the second generation model with
Resio-Tracy model is better than first generation model.

Fig.2 represents angular dependence at the frequency of the minimum of the spectrum
$f=0.16$. Second generation model improves correspondence with Resio - Tracy model with respect
to the first generation model.

Fig.3 represents nonlinear interaction term distribution as the function of the frequency at zero
angle. While the second generation model dependence is much closer to Resio-Tracy results in the
vicinity of the minimum and the maximum of the spectrum, it still fails to describe high - frequency
tail of the distribution.



Figure 1. Directional (angle averaged) spectrum as a function of the frequency f .
Crosses represent Resio-Tracy results, dashed line -- first generation model, solid line - second

generation model.

Figure 2. Angular dependence at fixed frequency 16.0=f . Crosses represent Resio - Tracy results,
dashed line - first generation model, solid line - second generation model.



Figure 3. Nonlinear interaction term dependence on frequency at the angle 0=ϕ .
Crosses represent Resio-Tracy results, dashed line -- first generation model,

solid line - second generation model.

IMPACT/APPLICATION

The second generation diffusion model is the simple model which takes into account the effects of
non-locality of the interaction of surface gravitational waves. As the first generation model,
it preserves the constants of the motion, has righteous scaling and Kolmogorov solutions. Second
generation model also contain first generation model as a special set of parameters.

Least square optimization allows to find unknown coefficients for the second generation
model using the results of kinetic equation numerics.  Comparison of the second generation model with
kinetic equation numerics shows that second generation model improves directional and angular
dependence of the spectrum with respect to first generation model. It still fails to describe fine details
of the spectrum such as two - hump shape of the maximum and the high-frequency tail.

TRANSITIONS

Our first and second generation codes have been handed to people at the Army Water Experimental
Station for testing.

RELATED PROJECTS

There are two related projects:

1. "The response of wind ripples to long-surface waves -- application to radar studies", ONR N00014-
98-1-0439.
2."Statistical model for deep and shallow water waves", ARO DACA 39-99-C-0018.
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